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Abstract

In connection with the problems of development and implementation of perfect automatic and automated control systems
for complex technological processes based on modern information technology tools, the development of research methods for
multidimensional nonlinear discrete control systems is of particular relevance. The variety of these systems is due to the types of
modulation, non-linearities, modes of operation of impulse elements, characteristics of continuous parts. The article deals with the
problems of modeling and research of one-dimensional and multidimensional pulse-frequency systems with delay based on the use
of dynamic graphs. One of the key points in solving the problem is an approach based on the maximum consideration of the physical
features of these systems. Given the structural complexity of systems, it is necessary first of all to establish the possibility of decomposing
the system into simpler subsystems. Then the study of the system can be reduced to the study of individual subsystems and the nature
of their interaction, that is, to the determination of the properties of the system as a whole by the properties of its elements. Systems
with frequency-pulse modulation are essentially non-linear systems. The topological method based on dynamic graph models allows
solving the fundamental difficulties of studying nonlinear discrete systems with delay, allows clearly and strictly formalizing their
description, and makes it possible to obtain effective algorithms for analyzing one-dimensional and multidimensional systems of this
class. The article presents an example of using the obtained algorithm.

Keywords: nonlinear discrete system, frequency pulse modulator, frequency-pulse system with delay, dynamic processes, graph
model
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ntroduction. Currently, an exceptionally digital
technique is used to manage automatic systems
of various nature and various purposes. Measurements
and control are carried out in discrete times, therefore
discrete mathematical models of dynamic systems
are relevant. Initially, systems with pulse-frequency
modulation were widely used in radio engineering and
telemetry [1]. At present, pulse-frequency systems are
widely used in information and measurement technology
[2,3,4], in automatic control systems [5,6,7], in modulating
installations [8] and in the study of nervous activity [9,10].
Pulse-frequency systems belong to the class of essentially
nonlinear systems, since there is a nonlinear element in
their structure. To date, several methods of analyzing
pulse-frequency systems have been developed. The first
one is based on precise calculation methods and includes
questions of obtaining and analyzing difference equations
describing the dynamics of these systems. The second
direction is based on approximate methods related to the
linearization of a nonlinear element. Frequency methods
based on the direct method of A. M. Lyapunov and the
frequency access of V. M. Popov have found wide use in
the study of the dynamics of pulse-frequency systems. A
detailed review of the work and analysis of methods for
studying pulse-frequency systems is given in [11- 15].
Materials and methods. Fig. 1 shows a non-linear
discrete system with a constant control delay T.
Nonlinearity is created by a pulse-frequency modulator
(PFM); the object is represented by a dynamic link of the
1-th order (Figurel).
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Figure 1. Nonlinear discrete system with constant control
delay

The modulator generates a clock sequence of pulses
according to the modulation characteristic.

T =t ,—t,=dle()], ¢))

where is the error signal in the j-th interrupt period, ¢ -
is the moment of appearance of the j-th pulse at the output
of the pulse-frequency modulator, T; -is the wvariable
interrupt period of the pulse-frequency modulator.

The output signal of the pulse-frequency modulator
changes according to the formula:

() = signe(t;), {;<t<t +1,
/ 0, L+T, <0<t ]|’ @

On figure 2 proposes an equivalent circuit diagram of
the system. The zero-order extrapolator in the frequency-
pulse system keeps the signal e*(;) for a time equal to the

duration of the frequency-modulated pulses 1.
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Figure 2. Equivalent circuit of a pulse-frequency
system with a delay of the control signal
At the output of the frequency-pulse modulator, a
sequence of pulses of the same width, but with a variable
frequency, is formed [16-17]. The delay link delays this

sequence by time 6 (Figure 3).
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Figure 3. Pulse sequence at the output of the pulse -
frequency modulator (a); pulse sequence at the output of
the delay link (D).

Delayed control signals do not affect the linear part of
the system under the condition - t < 6. For t € 6, the
structural states of the system replace each other from cycle
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to cycle. In each of these states, the system is linear and
open-loop. From the output of the pulse-frequency
modulator, the control signals arrive at the linear part of
the system, provided that t > 6.

At t> 0, there is a non-programmed change in the
structure of the system. The structural states of the system
change in an arbitrary sequence (Figure 4). But in each of
them, the system is also a linear open system [18-19]. Let us
proceed to the construction of macromodels of the
dynamics of the functioning of a pulse-frequency system
with a constant delay.
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Figure 4. Changing the structure of a nonlinear discrete
system with delay

Suppose that in the time interval [0, 8] the number of
closures of the pulse-frequency modulator is equal to (k+1).

The sequence of pulses issued by the modulator at
moments t0, t1,12,..., tk is not skipped by the delay link.

Under the condition t > 6, some moment of closing the
impulse element tq can be in different intervals. It depends
on the value of the delay 6 and the value of the variable
interruption period of the pulse-frequency modulator
(Figure 5).

a) within the range of the j-th pulse of the delayed pulse
sequence, i.e.

f+0<t, <t +0+71,
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Figure 5. Dynamic graph model of the pulse - frequency
system.
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As can be seen from this condition, the state variables of
the system are determined first for the moment of time tj+
0, then for the moment of time tj+8+tu ;

b) outside the zone of action of the j-th pulse of the
delayed sequence, i.e. within the interval covering the
pause between the j-th and (j + 1)-th pulses.

When this condition is met, the state variables of the
system are determined first for the moment tj+0, then for
the moment tq, and so on.

t.+7 +0<t <t.+86.
J 3 q J

In this case, the processes are defined first for the
moment tj+0+tu , then for the moment tq, and so on.

The dynamic graph model of a system with a pulse-
frequency modulator is shown in th. 5. We write down the
recurrent relations obtained from the analysis of graph
models.

t<so
i=0,1,...,k-1,
e(t;) = f(rj) - x1(‘tj)= (1)
&'(17) = signe(r)). o
Tj=t+1 - tj = v [e(t)], (3)
X(tjttu) = A (vu) X(tj) )
X(tj+1) = A (Tj) X(ti) (5)
X(0) = A (6 - tk) X(tk) (6)
t>06
i=k k+l,..,n.,

e(t;) = f(tj) - xl(tj):
e'(1]) = signe(t}),
Tj=w [e(t],

If -k +0<tj+1 = tj-k+ 0 + tu, then:
X(t+1D)=A(tj+1- a)X(c)+B(tj+1- a)sign e(t+j -k),  (7)
X(a +tu)=A(tu) X(a)+B(tu) sign e(t+j- k), (8)
X(tj-k+1+0) =A(Tj-k )X(a)+B(Tj-k)signe(t+j-k+1), (9)

where a=0+1tj-k

Iftj -k + 6 + tu < tj+1 < tj-k+1 + 6, then

X(a + tu) = A(tu) X(a) + B(tu) sign e(t+j -k), (10)
X(tj+1) = A(tj+1 - o -tu) X(ee + 1), (11)
X(tj-k+1+8) = A(Tj -k) X(a) + B(Tj -k) sign e(t+j -k+1). (12)
Definition of system state wvariables with pulse-
frequency modulator and control signal delay
1. A dynamic graph m0|del of the system is built - the
subgraph of the delayed signal and the subgraph of the
continuous part of the system are combined.
2. For all steps starting from the first one (i =0, 1,..., k),
we define

e(t}—) = f(tj) - xl(tj):
Tj=tj+1 —tj =y [e(tj)], ti+1 =Ti + ti
3. Calculate the state variables by the relations (4)-(6).

4, At the same time, we calculate the number of closures
I=k+1 of the pulse element that occurred in the interval (0,
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0], checking the condition ti € 6

5. Starting from the (k+1) th step (t >0, j = k+1, k+2,...,
N), we define

e(t;) - f(tj) 7xl(tj))

Tj=tj+1 - tj=y [e(j)], Ti+1=Tj +tj

6. If the conditions tj-k + 6 < tj+1 < tj-k + 6 + tu,, are
satisfied, then the state variables are calculated by the
relations (7) - (9).

7. If the conditions tj-k + 8 +tu < tj+1 = tj-k+1 + 6, are
satisfied, then the state variables are calculated by the
relations (10) — (12).

Within the framework of the obtained results,
multidimensional pulse-frequency systems with a delay can
also be studied. Figure 6 shows a block diagram of an N-
dimensional pulse-frequency system with delays in the
controls.
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Figure 6. Multidimensional pulse-frequency system with
control delays.

Autonomous pulse-frequency modulators implement

the law of frequency modulation
Tjr = v rferj(tjr)],

where tjr - the moment when the j-th pulse appears at
the output of the r-th pulse-frequency modulator,

erj(gn)- r - th channel error signal (r=1, 2, ..., N).

Unsynchronized operation of autonomous modulators(
in general), various delays in control actions cause
significant difficulties in the study of the class of systems
under consideration. Here, at first glance, there is an even
more chaotic change of structural states than in a
multidimensional pulse-width system with a delay.
Nevertheless, by ordering the time sequences with which
we are dealing in this case, it is possible to carry out a clear
formalization of the description of the dynamics of the
functioning of a multidimensional nonlinear discrete
system with a constant delay.

Let the closing moments of the impulse elements tjr (r =
1, 2, ..., N) be determined at some j - th step. We obtain an
unordered finite set of points:

T1 = (tj1, 1j2, ..., tjN)

The set of time points that are delayed by the values 6
Ir, 0 gkjwith respect to tjr, we denote:

=0 +6" 0 + 6%, 0 + 607 1+ 67,0 + 67,

2 N2 N 1N N 2N N NN
+0 7, + 0 +07 Lt +67)

‘We will set the set of control pulse termination moments at
the outputs of the corresponding delay links:

T, :t;. + 6" +r1,tj. + 6% +r1,...,tj. + oM +r’,t§ +

+6% + 17,

C+60% 47,0 +0" +17,

0 +0 T 0 Y+ 67 + 17,

where 61t (r =1, 2, ..., N) — delay in the r-th cross channel,
erk (r=1,2,...,N,k=1, 2, ..., N, r#k)) — the delay in the

(rk) - th cross channel, tr - the duration of the frequency-

modulated pulses urk.

Let's define the union of finite sets T1, T2, T3

=LV

Let's order all points of the set T using the numbering
sequence 1,2, ..., n. On the time axis we get a finite set:

T#=(t1,12,..., tn).

We will introduce the time interval into consideration t1
<tstn.

We will introduce the time interval into consideration t1
<t € tn. Divide it into (n -1) intervals:

(t1, t2], (t2, t3], ..., (tn-1, tn].

Within each time interval (ti, ti+1], i= 1, 2, ..., n, a
multidimensional pulse - frequency system with a delay is
in the same structural state. Using a topological model, it is
not difficult to determine the behavior of the system at all
specified intervals, including moments: (t1, t2, ..., tn].

Performing the described procedure sequentially for
each step of the calculations, (j =0, 1, 2, ...,), it is possible to
fully define the processes in a multidimensional pulse-
frequency system with delays in the controls.

The dynamic graph model of a multidimensional
multidimensional pulse-frequency system with delays in
controls is constructed similarly to the graph model of a
multidimensional pulse-width system with delays and is a
combination of graph models of system elements:

G' =G/ UG UG UG”.

Naturally, the calculation of such a structurally complex
system as a multidimensional pulse-frequency system with
a delay can only be performed on a computer.

The algorithm for calculating processes in such a system
is proposed below.

Determination of state variables of a multidimensional
system with pulse frequency modulation and control signal
delay

of the system is constructed on the basis of combining
graph models of its elements:

G =G/ UGZ UG LG,

At each step of the calculations, j = 0, 1,..., m, in
accordance with the modulation -characteristics, we
determine the closing moments of the pulse elements:

tj1,tj2,...,tjr,

We determine the moments of occurrence of control
pulses at the outputs of the corresponding delay links:

1 11 .1 21 1 V1
L+6,0,+07 .1, +07,

2 12 .2 22 2 V2
+0°,0+07,.,0+077,

N 1IN N N N NN
[+07,0 +607 .+ 07,
We determine the moments of the end of the delayed
pulses
1 11 1 .1 21 1 1 N1 1
L+6 +T 0 +07 +T L +0 +T,

t? + 6" +rz,r? +0% + rz,...,tj +6" + 17,
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z‘f +0" +r“',z‘f +0% + r”,...,z‘f +0™ + 1),

We arrange the obtained points on a single time scale
and mark the interval §j on which they are located.

Using the graph, we determine the state variables, the
output coordinates of the system for all time points marked
on the interval §j.

7. Return to step 2.1 of the algorithm.

Consider an example.

Let us calculate the transient process in a frequency-
pulse system with an ideal frequency-pulse modulator
(PFM) and with a control delay (Figure 7).

. z - 5 X
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T

Figure 7. Structural diagram of a frequency-pulse system
with an ideal frequency-pulse modulator (PFM) and with a

control delay.
Initial data and system characteristics:
G(p) = 20 =2 g =i n(e,)
T op(p+2)" T 0a4ey|” M griln).
Th =th—1 —tn 6 =1sek
Solution:
e(tg) = ulty) — x,(tp) = 1;2(t3) = sign(e(tz)) = 1;
= 2.272;

7 01+]e(r3)]
ty =ty + Ty =2.272.
We build a graph of transition states of the system
(Figure 8).

=it) it
Figure 8. Dynamic graph model of one-dimensional
nonlinear system.

with a pulse-frequency delay modulator.
Based on the graph model for the state variables of the

system at the time t=t + 9, we write the following
expressions:
1
-1 -02¢
x,(0)= x,(t,)=€e" "x,(t,)=0
p+0.2 .
b

-xl(g):xl(fo)"’fl{ }-xz(fo):

p(p+0.2)
=x,(t,)+51-e"¥)x,(£,)=0
.r: (31)= L_l{ }[xg(ﬁ)+0.04z(ta)]=

p+0.2
= e, (8) +0.042(t;)] = 0.031011;
x(t)=x(6)+L" { : }[xz(‘g) +0.04z(5) =

p(p+0.2)
=x,(8)+5(1- ™) x,(6) +0.042(z; ) | = 0.044946

For system state variables at time ¢ = f1+ B we write
the following expressions:

o1
HH+0)=L {p+0.2

=e %%, (1,)=0.025389

4 1 B
x (4 +60)=x()+L {m}xz(ﬁ) =

} [xg (tl):

=x,(6) +51-e"*)x,(z,) = 0.073053

For system state variables at time £ = T2= 4,707 we write
the following expressions:

x,(t)=L" {ﬁ} [x,(z, + 6)+0.04z(£])] =

=By, (1, + 6) +0.04z(1)] = 0.049722

1 }X
p(p+0.2)
x[xz(tl +6) +0.04z(s‘1+)] =
=x,(1,+ 0) +5(1 — 2By

><[.x2(rl +6) +0.04z(r1+)] =0.151389

x,(2,)=x/(, +6) +L_L{

For system state variables at time ¢ = 2+ 0 we write
the following expressions:

n(t+6)=L" {ﬁ} [x,(2,)=e"**x,(2,)= 0.040709

-
p(p+0.2)
=x,(4) +5(1 - e %) x,(4) = 0.196455

x,(t, +0) = x,(¢,) +I! {

In general, for time points & 6,i=01,..n

expressions for system state variables will look like:

-1 1 4N
%)=L {p+0_2}[x3(rf+9)+0'04‘(rf )=

= 2T (1,4 0) +0.042(2)];

1
p(p+0-2)} :
x[xz(t‘j +6) +0.04z(r;)] =

x(t.)=x0+0) +L {
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e(t3+), the output signal of the pulse-frequency modulator

14

) z(t3+), etc.
h f\ /\ /\ /'\ The calculation of the transient process in this system
! with PFM based on its graph model was performed in

\/ \f \/ \/ Microsoft Excel. Based on the results of the calculation, a

graph of the output coordinate of the system was obtained -
x1(t). On fig. 9 shows a graph of the transient process in the

t frequency systems with a delay. Based on the results
50 100 150 200 250 obtained, algorithms for calculating processes in a one -
dimensional and multidimensional pulse-frequency system
with a control delay are obtained [20-22]. The use of

0

06
0u | [ [ [ [ . system on the time interval t € [0, 150]
' Conclusions. Dynamic graph models allow us to obtain
02 ] recurrent relations for calculating processes in pulse-
o

Figure 9. Graph of the transient process in the frequency-

. p ulse systené ) transition state graphs makes it possible to perform a clear
syst.em on the time interval t < [0, 150] , obtained on formalization and automation of computational procedures
the basis of the graph model. for calculating systems with non-program changes in the

lI'hus, we find successively the values of the system state structure. The ordering of the time sequences that take

variables x1(t), x2(t) at time t3_' the error signal at the  ;ace in this case allows us to perform a clear formalization

moment of the subsequent closing of the pulse element of the dynamics of the structures of one-dimensional and
multidimensional nonlinear systems with a delay.
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